A requirement for trypsin-sensitive cell-surface components for cell-cell interactions of embryonic neural retina cells
نویسندگان
چکیده
A quantitative assay was used to measure the rate of collection of a population of embryonic neural retina cells to the surface of cell aggregates. The rate of collection of freshly trysinized cells was limited in the initial stages by the rate of replacement of trypsin-sensitive cell- surface components. When cells were preincubated, or "recovered," and then added to cell aggregates, collection occurred at a linear rate and was independent of protein and glycoprotein synthesis. The adhesion of recovered cells was temperature and energy dependent, and was reversibly inhibited by cytochalasin B. Colchicine had little effect on collection of recovered cells. Antiserum directed against recovered cell membranes was shown to bind to recovered cells by indirect immunofluorescence. The antiserum also was shown to inhibit collection of recovered cells to aggregates, suggesting that at least some of the antigens identified might be involved in the adhesion process. The inhibitory effect of the antiserum was dose dependent . Freshly trypsinized cells absorbed neither the immunofluorescence activity nor the adhesion-inhibiting activity. Recovered cells absorbed away both activities. In specificity studies, dorsal neural retina cells adhered to aggregates of ventral optic tectum in preference to aggregates of dorsal optic tectum. The adhesive specificity of the dorsal retina cells was less sensitive to trypsin than the adhesive specificity of ventral retina cells which adhered preferentially to dorsal tectal aggregates only after a period of recovery.
منابع مشابه
Cell based therapies in retinal diseases
Background Degenerative retinal diseases, including age related macular degeneration, glaucoma, and hereditary retinal dystrophies are major causes of blindness. The principal defect in these diseases is cell loss which is amenable to both cell based neuroprotective and neuroregenerative therapies. To briefly review the lines of research and potential candidates for cell based therapies among ...
متن کاملDifferentiation of Mouse Stem Cells into Neural Cells on PLGA Microspheres Scaffold
The cellular therapy and nerve tissue engineering will probably become a major therapeutic strategy for promoting axonal growth through injured area in central nervous system and peripheral nervous system in the coming years. The stem cell carrier scaffolds in nerve tissue engineering resulted in strong survival of cells and suitable differentiation into n...
متن کاملGangliosides support neural retina cell adhesion.
Cell surface carbohydrates and complementary carbohydrate receptors may mediate cell-cell recognition during neuronal development. To model such interactions, we developed a technique to test the ability of cell surface lipids (particularly glycosphingolipids) to mediate specific cell recognition and adhesion (Blackburn, C.C., and Schnaar, R.L. (1983) J. Biol. Chem. 258, 1180-1188). When cells ...
متن کاملAnalysis of Promyelocytic Leukemia in Human Embryonic Carcinoma Stem Cells During Retinoic Acid-Induced Neural Differentiation
Background: Promyelocytic leukemia protein (PML) is a tumor suppressor protein that is involved in myeloid cell differentiation in response to retinoic acid (RA). In addition, RA acts as a natural morphogen in neural development. Objectives: This study aimed to examine PML gene expression in different stages of in vitro neural differentiation of NT2 cells, and to investigate the possible role o...
متن کاملDifferentiation of human embryonic stem cells into neurons
Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 75 شماره
صفحات -
تاریخ انتشار 1977